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ABSTRACT

This is a discussion of the use of the perturbed hard sphere equation of state to describe
refrigerants and refrigerant mixtures. A brief review of mixture modeling is given. Two
mixtures, R13B1/R152a, and R12/R22, are discussed as examples of the usefulness of the model.

INTRODUCTION

The past decade has been witness to a surge of interest in the use of mixtures as working
fluids in hest pump/refrigerating/sirconditioning applications (Bougard, 1980) and in the
geothermal power industry (Kestin et al. 1980). Anyone proposing to use a mixture is
confronted with two questions: first, what are the properties of the mixture; and, second, are
there effective ways of summarizing experimental information and predicting properties where
there is no information? In this paper, we discuss the properties of two mixtures, the first,
bromotrifluoromethane (R13B1) and 1,1-difluoroethane (R152a), a mixture without an azeotrope
but whose properties deviate from the ideal mixing model, and the second, dichlorodifluoro-
methane (R12) and chlorodifluoromethane (R22), a mixture with an azeotrope.

The next and following sections of this paper discuss the physical foundation of the
equation of state we have used to describe these mixtures, the perturbed hard sphere equation
of state, and the problems associated with extending such an equation, originally intended for
a pure fluid, to mixtures. Although the equation of state proposed here is differeant in
fundamental ways from the traditionmally used industrial equations, the problems comnected to
the notion of 'mixing rules’ are universally applicable. In the later sections of this paper,
comparisons are made between the measured properties of the mixtures and the properties corre-
lated and predicted by the equation of state. The final section, before the concluding
remarks, discusses some of the problems comnected with critical points in the phase diagram.

THE _EQUATION OF STATE

Let us briefly review the classes of equation of state snd the conditions under which they
apply. The simplest of all equations is the perfect gas law, pv/RT = 1. It is appropriate
only for gases at very low pressures, less than 15 psia (0.10 MPa), and typically would be used
only for making 'ballpark’ calculations. There are a number of ways that the elegant form of
this equation has been used to expand its range of usefulness; we shall consider two for which
there are firm theoretical foundations. First is the virial equation of state (Mason and
Spurling 196€9), pv/RT = 1 + B(T}/v +... When this equation is truncated at the second virial
coefficient, B(T), it is appropriste to pressures as high as 150 psia (1.0 MPa); however, only
in the gas phase.

A second approach is the reduced equation of state, pv/RT = fl(Tr,vr) + “’fZ(Tr'vr)‘ The
functions f, and f, are universal functions of the reduced temperature and volume based on
experimental data %Edmistet 1958) and the function, w, the acentric factor, is an empirical
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device to compensate for the nonspherical nature of molecules. This equation of state form,

although rooted in a theoretical model, depends upon data for real materials to evaluste f1 and
f,. Such equations of state are appropriate at all conditions and are limited by the knowledge
o% the reference fluids and the sbility of w to compensate for the shape of the molecule.

The van der Waals equations of state, pv/RT = v/(v-b) + £(v,T), make up a large fraction
of the equations used in industry. The first term compensates for the excluded volume during a
bimolecular encounter. The second term accounts for the sttraction between molecules; in
addition, it is used to compensate for deficiencies in the first term. Such equations of state
are quantitative only in the gas phase; they typically represent the liquid poorly. At high
densities, the treatment of the excluded volume is both inadequate and incorrect (Henderson
1979).

Finally, there are equations of state founded on the properties of a theoretical reference
fluid such as the Lennard-Jomes fluid (Verlet and Levesque 1967) and the hard sphere fluid
(Carnahan and Starling 1969). In a sense, this final approach is a theoretical response to the
empirical reduced equation of state. The advantages to this last approach are at least two—
fold: first, the packing problem at high densities is correctly addressed; second, the refer—
ence fluid itself is a well characterized material on which well controlled experiments can be
performed. The equations arising from these models have the added advantage that their
parameters have a direct physical interpretation.

In this paper, we are proposing to use a single equation of state to describe both the
liquid and vapor phases of the pure materials and their mixtures. The approach taken here is
to fashion the properties of the real fluid with respect to a reference fluid, in particular,
the hard-sphere fluid as represented by the Carnshan-Starling equation of state (Carnmahan and
Starling 1969), which is modified by adding a term similar to the second term in the Redlich-
Kwong equation of state (De Santis et al. 1976) as seen in Equation 1.
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In a mathematical sense, the second term gives rise to the liquid-vapor phase tramsition:
in a physical sense, it is a consequence of the long-range attractive forces between the
molecules. The thermodynamic functions that arise from this equation of state are listed in
Appendix A. Of course for a complete description of the fluid, perfect gas heat capacities
also need to be known. Although the heat capacities are available for the species examined in
this paper, none of the calculations discussed here requires them.

The parameters, a and b, are determined by finding the values that not only satisfy the
liquid-vapor equilibrium conditions but also best represent the known properties at saturation.
The criterion for 'best described’ is the values of a and b that minimize the funmction
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Here vy and v_, are the saturation liquid and vapor volumes respectively and p is the
saturation pressure. Those quanties followed by ‘(EOS)’ are the respective properties ‘
predicted at equilibrium by the equation of state. The parameters, a and b, are then fit to
functions of temperature; details of the functional form and the values of the coefficients are
found in Appendix B. The details of the procedures for finding the molecular parameters and
locating the phase boundaries by the equation of state are found elsewhere (McLinden and
Morrison 1985).

THE MIXING RULES

An important feature of any model is its ability to predict properties of a material when there
are no data or, more correctly, when there are only remotely related dats. For example, the
method of corresponding states (Rowlinson and Swinton 1983a) coupled with critical point infor—
mation and the value of the acentric factor (Pitzer 1955) allows ome to guess the saturation
properties of a pure material with considerable accuracy. Other schemes, such as the func—
tional group contribution scheme (Ambrose 1978), allow one to make very good guesses about the
properties of a material by knowing only its molecular structure. These techniques give the
appearance that quantitative informatiom can be generated from 'mothing.” Such models depend
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The thesis on which the schemes described by Knobler and Pesuit are constructed is that
the nature of the unlike interaction in & mixture canm be estimated solely from the known like
interactions. This thesis neglects the possibility that there canm be interactions in a mixture
that either do not occur or are unimportant in the pure materials. Recently, Gubbins and his
colleagues have attempted to evaluate functions related to f1 from the multipole-multipole
interactions between molecules (Gubbins and Twu 1978). In a recent paper Wallis et al. (1984)
have shown that this approach can be used effectively in describing mixtures of co, and ethane.
In this paper, experimental information is used to evaluate the equation of state parameters
connected to the mixtures.

EQUILIBRIUM PROPERTIES OF R13B1/R152a

In this section, we will describe the properties of a mixture that does not have an azeotrope,
R13B1/R152a. Unlike most azeotropic refrigerant mixtures, there is little published informa-—
tion about this mixture. The first part of this section will be devoted to a brief description
of the experiments conducted on this mixture and the nature of the data. (A more thorough
discussion of these data will be made elsewhere (Morrison and Neal 1985).) We will then
discuss the correlation of those data using the perturbed hard sphere equatiom of state.

Samples for this study were prepared by distilling measured quantities of each of the
components from a gas buret into a stainless steel thermocompressor at liquid nitrogen
temperature. The amount of each of the components was determined in two ways: first, an
approximate determination by using the temperature-pressure-volume measurements from the gas
buret and the values of the second virial coefficient predicted by the equation of state
described earlier in this paper; second, by weighing the thermocompressor after each successive
addition of the components (Morrison and Kincaid 1983). The second virial coefficient for
R152a agreed within experimental uncertainty with the values listed by Dymond and Smith (1969);
those values were derived from the measurements of Mears et al. (1955). Second virial coeffi-
cients for R13B1 were not available in the literature. The measurements included rums on each
of the pure refrigerant materials and on mixtures that were roughly 25, 33, 50, 67, and 75 mole
percent R152a. The mixtures we~-e moved from the thermocompressor into the sample cell, which
was constructed from a drawn sapphire tube and had a volume of approximately 0.43 in® (7.0 mL)
(Davis 1983). The volume accessible to the sample could be changed, however, by raising and
lowering the mercury level in the sapphire tube.

The cell was kept in a water bath whose temperature was controlled to +/— 0.0002 F (0.0003
K): the temperature was measured with a quartz crystal thermometer calibrated with an NBS-
calibrated 25 Ohm platinum resistance thermometer. The total volume accessible to the sample
and the volumes of the individual phases were determined to +/— 0.5% by measuring the distances
between the top of the cell and the liquid-vapor meniscus or the liquid mercury meniscus. The
volume of the cell was calibrated with triply distilled mercury. Pressures were measured to
0.15 psia (1 kPa) with a differential gauge calibrated with a dead-weight gauge.

Measurements of the liquid and vapor volumes and the pressure were made at five nearly
equally spaced temperatures between 51 F (16°C) and 131 F (55 °C). Several sets. of measure—
ments were made by progressively enlarging the volume accessible to the sample. The results
most immediately determined from these data are the liquid molar volume and the pressure on the
bubble line. Although no samples of either phase were taken during the experiments, there is
sufficient information in these data to locate the dew point curve (Enobler and Scott 1982).
The data for the bubble curves are shown in Figures 1a and 1b; the solid and dashed lines are
the correlated bubble loci and the predicted dew loci, respectively. The composition of the
dew phase in equilbrium with the 50% mixture is shown. One should note the dramatic narrowing
of the two-phase region on the R13Bl side of the phase diagram, especially at the highest
temperature. This 'ibis beak’ like structure is not the onset of an azeotrope, rather an
indication of the nearness of the R13B1 critical point at 153 F (67 °C).

The equation of state was generated by first fitting the properties of the pure materials
in the fashion refered to earlier. The value of the mixing parameter, f12’ was then adjusted
to optimize the pressure correlation along the bubble curve. We elected to use only the
pressure data and not include the volume data to find the mixing parameter because of the
higher precision of the pressure measurement. The pressures are correlated to +/— 0.7 psia (5
kPa); the predicted volumes fall consistently at the high end of the uncertainty of the measured
volumes,



vpon the notion that Nature behaves in a well-ordered way and that, even when the scientist is
unable to ascertain the connection between molecular structure and macroscopic properties from
first principles, the apparent correlation between them can be used with certitude. The method of
corresponding states is firmly rooted in molecular theory and the origin of the acentric

factor, although itself an arbitrary comstruct, is understood from perturbation theory. These
methods, far from producing quantitative information from ‘nothing,’ are then founded on

physical principles and extensive correlation of data.

Let us now consider the state of the mixing rules for multicomponent systems. In a binary
mixture, a molecule can have at least two kinds of interactions, with like and unlike species.
Such & notion is appropriate in the dilute gas phase; in the liquid phase, the character of
like and unlike interactions is profoundly affected by the molecular composition surrounding
the pair. A modest effort to account for the surroundings are 'two-fluid’ models for mixtures
(Scott 1956).

In the simplest mixture models, the effective molecular parameters in the mixture are
evaluated as follows:
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When i=j, the values of a and b are those of the pure materials, The values of 3P and
b12 can be obtained if the values of a and b are known for the mixture; however, the motivation
of the mixing rules is to determine 814 and b without the assistance of measurements. The
simplest approach is to use the van der Waals and Lorentz rules, for which
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(Unless the two molecular volumes differ by more than 42%, these two schemes for b12 will
differ by less than 1% and will lead to less than 1/4% difference in the evaluation of b for
the mixture.)

Often, these mixing rules are found not to be adequate. The value of P is typically altered
by using the following prescription:
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These mixing rules are completely empirical, especially the device represented by f12.
Let us consider the schemes for predicting this interaction parameter. For mixtures of the
noble gases, Equation 8 gives one of the simplest estimates for the value of f15:
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where Ii(or ) is the ionization potential and %ii is the molecular diameter of species i (or
j). This expression tries to compensate for the difference in the polarizability (or the ease
with which the electron clouds are deformed) between the molecular species. Knobler (1978) has
shown that even for so simple mixtures as He/Ne, He/Ar, He/Kr, and He/Xe that Equation 8 is far
from adequate. For example, he shows that for He/Xe, the experimental value of 1—f1 is 0.611
and the predicted value is 0.824. Pesuit (1978) has compared at least half a dozen different
semiempirical schemes of estimating f12 for many different kinds of mixtures. He is able to
report the whole spectrum from success to failure for a large range of mixtures. The conclu-—
sion that one would draw from Knobler and Pesuit is that the methods for estimating f,, are not
very satisfactory, that a method appropriate for one class of mixtures needn’t be satisfactory
for another.



the perfect gas heat capacities. Neilson and White (1959) have measured the enthalpy change
associated with the complete evaporation of mixtures of R12/R22 over the entire composition
range at -60.07 F (222.00 K). Their data, plotted in Figure 4a, are integral quantities
because the composition of the liquid changed as the evaporation proceeded. The prediction of
a closely related quantity, the enthalpy change associated with the complete vaporization of
the liquid mixture at fixed composition to its vapor at the same fixed composition, is shown by
the solid curve in Figure 4a. The agreement between these two closely related quantities is on
the order of +/- 0.5 %; the equation of state predicts nearly quantitatively the curvature
associated with the composition. By using these evaporation data, Neilson and White were also
able to_evaluate a quantity closely related to the enthalpy of mixing along the saturation
line, H”. The comparison of their calculated values and the predicted values are shown in
Figure 4b. The equation of state overpredicts this quantity. Onme should note, however, that
the quantities are not exactly the same and that the experimental value should underpredict
slightly. The comparison between the two is encouraging indeed. That such intricate details
about this mixture are accessible through so little information is a demonstration of the power
and versatility of the perturbed hard sphere equation of state.

THE EFFECT OF NEARBY CRITICAL POINTS

Throughout the past few sections, we have compared a fluid mixture model based upon a
hard-sphere reference fluid and the actual behavior of pure and mixed refrigerant materials.
By using this model, the thermodynamic properties of these fluids, both pure and mixed, can be
described by having only a modest set of experimental information. In making the comparisonms,
we have avoided critical points, one phenomenon that canmot be described quantitatively by this
or any of the commonly used industrial equations of state.

First, let us note that this model has a critical point. Were we to use data far from the
critical point (Sengers et al. 1981) to evaluate the parameters in the equation, we would find
the following discepencies between the measured and predicted critical properties: first, the
predicted and measured critical points would not coincide within experimental uncertainty;
second, the predicted values of all the extensive properties — volumes, enthalpies, entropies,
etc. — would differ from the measured values in fundamental ways; finally, the values of the
thermodynamic response functions —-— heat capacities at both constant pressure and temperature,
the isothermal compressibility, and the thermal expansion coefficient — would all diverge more
strongly near the critical point than those respective properties predicted by the equation of
state.

One is tempted to resolve these differences by forcing the equation of state to match the
critical behavior., Such coercion does not represent an acceptible solution to what is a
fundamental physical problem. Forcing the equation of state to match the critical behavior
affects the temperature dependence of the molecular parameters, a and b; thus, states far from
the critical density — and critical point -— but near the critical temperature would 'sense’
the critical point in a physically unrealistic way. The alteration of an equation of state to
produce both proper near—critical and far-from-critical behavior is a major task (Woolley,
1983) and will not be discussed here. As long as one is not operating too near the critical
point, a somewhat subjective prescription that depends upon the property being considered,
'classical’ equations of state, such as the one discussed in this paper, can describe the
properties of a fluid quite accurately.

There are advantages to using a function that can describe both liquid and vapor states,
even if it cannot describe the critical region. The first is that separate schemes for liquids
and vapors are not needed. The second is that mixing prescriptionms, particularly for the
liquid phase, that work well when both the components of the mixture are well below or above
their critical points can collapse completely when one of the compoments is near its critical
point, even when the mixture is an 'ordinary’ liquid (Morrison 1985). Using a good equation of
state will work so long as the fluid of interest is not near—critical. Depending upon the
property, a ’'classical’ equation may even be adeqmate in the critical region.

A striking example of the effects of a nearby critical point can be seen in the measure—
ments of the enthalpy of miximng of CO, and toluene (Morrison et al. 1985) shown in Figure 5.
Were this an ideal mixture, all the data would fall on the line H®=0. Indeed, were both these
materials ‘ordinary’ liquids under the conditions of these experiments, one would expect nearly
ideal behavior, at least on the scale of this figure.- The details of this figure are discussed
elsewhere. Similar kinds of behavior can be seen in the volumes of mixing (Eckert et al.
1983). These large departures from ideal mixing are inevitable whenever one of the components
in the mixture is near-critical. Although none of the properties of the mixture may show



AZEOTROPES AND THE EQUILIBRIUM PROPERTIES OF R12/R22

In the previous section, we have examined the simplest kind of behavior one can expect from a
mixture of two liquids, complete miscibility and the monotome variation of properties from one
pure component to the other. In this section, we shall consider an example of the next most
complex behavior case, azeotropy. Our motivation in this section is twofold, first, to discuss
the situations when one can expect an azeotrope and second, to examine a2 refrigerant mixture
for which there are calorimetric data.

Let us consider the situation when one would expect an azeotrope. An azeotrope is
inevitable when the saturation curves of the two components cross in the p-T projection. Such
a point of apparent intersection is called a 'Bancroft point’ (Rowlinson and Swinton 1982b);
the mixture R12/R152a, also known as R500, shows just such a behavior, In mixtures where there
is a Bancroft point, the azeotrope can traverse the entire composition range; for R500 this
behavior is intercepted by the solid phase and the critical locus (Pennington 1952). Since any
kind of non—ideal behavior causes a deviation from the Raoult law prediction, the closer the
vapor pressures of the two components, the more likely there will be an extremum in the T-x or
p—x lines and, hence, an azeotrope. Closeness of vapor pressures is often associated with
closeness of critical temperatures, since, with a few notable exceptions, the critical pressure
of many materials are nearly the same, about 600 psia (4 MPa), and saturation lines are roughly
parallel in a p-T projection. One can thus conclude that two materials with nearly the same
critical temperature are likely to show azeotropic behavior. A sharp demarcation cannot be
drawn, howevers a certain critical temperature difference needn’t guarantee the presence or
absence of an azeotrope. That depends upon the molecular character of the components in thq
mixture.

The mixture R12/R22, also known as R501, has an azeotrope that emerges from the pure R22
axis of the phase diagram at approximately 116 F (320 K) and moves into the mixture region as
the temperature is lowered until, at -40 F (233 K), the azeotropic composition is approximately
10 mol percent R12 (Spauschus 1962). The variation of the azeotropic composition with tempera-—
ture is not unusual; however, the amount by which it can vary with temperature will be
different from one mixture to another. The azeotrope in R12/R22 is a positive azeotrope
(Rowlinson and Swinton 1982b); that is, the boiling curve will have a marimum pressure when
measured at constant temperature or, conversely, a minimum temperature when measured at
constant pressure. This kind of azeotrope is what one would typically expect from refrigerant
mixtures. The opposite kind of behavior is typically encountered when the two components
interact strongly, such as the hydrogen bonding encountered in chloroform/acetone (Earr et al.
1951).

The mixture R12/R22 shows azeotropic behavior over a range of temperatures and compositionms
as shown in Figure 3. The azeotropic point is typically found by locating an extremum in the
bubble point curve; at such an extremum, the second law of thermodynamics requires the liquid
and vapor phases to have the same composition and the dew and bubble lines to be tangent (Bett
et al, 1975). Because of the flatness of these lines around an azeotrope, the uncertainty in
the composition is typically large. The data of Eiseman (1957), for example, determine the
azeotrope only to within 5 mole percent as shown by the error bar in Figure 3.

The equation of state parameters for pure R12 and R22 were determined by using data from
the ASHRAE tables (1981). The procedure for evaluating a and b was the same as described in
the previous section for the refrigerants R13B1 and R152a, values for the molecular parameters
are given in Appendix B. Figures 2a and 2b show the comparison between the properties consis-—
tent with the equation of state and the properties in the tables. The mixing parameter was
determined by fitting the bubble point predicted by the equation of state to the comstant
pressure boiling temperatures measured by Eiseman (1957) over the full range of compositions.
The value of the mixing parameter was slightly composition dependent; a value averaged over the
entire composition range (f12 = 0.0406 +/- .0088) was used.

The first test of the eguation of state for the RI2/R22 mixture is the comparison of its
prediction of the temperature dependence of the azeotropic composition. The solid curve in
Figure 3 shows that the prediction falls within the experimental measurements of the azeo—
trope. As we have noted previously, there is considerable uncertainty in those points. The
dashed line in the figure is the locus suggested by Spaschus (1962) from measurements he made
on a grid of composition-temperature conditions. Our prediction, which arises from data at a
single pressure, nearly coincides with Spauschus'’s experimental locus.

The equation of state contains enough information to evaluate enthalpies as long as the
temperature is fixed, for differences in enthalpy due to temperature changes, one also needs



critical behavior, one must always keep nearby critical points in mind because the properties
of mixtures change rapidly near them and because neglect of such effects can lead to serious
errors in mass and energy balance calculations.

DISCUSSION

We have shown that an equation of state founded on a realistic physical model, the hard sphere
fluid, can correlate both liquid and vapor data without the need for adding a huge number of
correction terms to the equation. This has been shown both with the pure refrigerants, R12,
R22, R13B1, and R152a, and in the mixture R13B1/R152a. For the pure materials, the saturation
properties were represented to within a few tenths of a percent, within the precision for many
of these properties. Not until the temperature approached the critical point did deviations
exceed this range. For the mixture, the pressures were represented to +/= 0.7 psia (5 kPa) and
the molar volumes from 0.0 to + 0.5 % of the measured value. One should note that volume,
becanse of its semsitivity to microscopic geometric details, is the most difficult of the
properties of a mixture to predict.

We have also shown that the perturbed hard sphere model can be used with confidence to
predict properties that may not have been measured., This was shown by the ability to predict
the temperature dependence of the azeotropic composition in the mixture R12/R22. This predic—
tion arose from the correlation of the pure components and a single bubble point curve. We
have also shown that the equation of state was able to predict the detailed behavior of the
enthalpy of vaporization as a function of composition.

Finally, we examined the state of theory of mixing rules. We have argued that the schemes
used classically work marginally well even for mixtures of the noble gases and that methods to
expand the mixing rules to more complex molecules are not dependable. We suggest that the area
of mixing rules is ome ripe for research and that efforts to predict the mixing parameters from
first principles are showing promise. We advise, however, that the most certain values of the
mixing parameters will always be those originating from experimental data.

NOMENCLATURE

a(aij) = equation of state parameter associated with intermolecular attraction (between
species i and j)

a'(a’'"’) = first (and second) derivative of a with respect to temperature

A(APB) = molar Helmholtz free energy (of a perfect gas reference fluid)

b(bi) = equation of sta;e parameter associated with the hard core of a molecule (of species
i)

b'(b'’) = the first (and second) temperature derivative of b

B = second virial coefficient

Cv(cp) = molar heat capacity at constant volume (pressure)

E(EP8) = molar internal emergy (of a perfect gas reference fluid)

fij = an empirical function to compensate for the real behavior in a mixture of species i
and j .

G(GPB) = molar Gibbs free emergy (of a perfect gas reference fluid)

H(HPE) = molar enthalpy (of a perfect gas reference fluid)

I = jonization potential

P = pressure

p* = pressure of a perfect gas reference fluid equal to the saturation pressure of the

pure component at the temperature T



R = gas constant

S(sP8) = molar entropy (of a perfect gas reference fluid)
T = thermodynamic temperature

v = molar volume

x; = mole fractionm of component i

y = function defined in equation 1

B = b/4

B'(B'") = first (and second) temperature derivatives of B

By " = chemical potential of species i
c = molecular diameter
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S(v,T,x) = SPE(y,T,x) + &'b = ab’ 2n<% + b) + —18b' _ RB(4v - 38) _ RTB’'(4v2 -32v5)
b2 v b(v + b) (v - 5)2 (v - B)
E(v,T) = EPS(y,T) + &'bT = ab'T - ab 2n<v + b\, _ab'T _ RT28'(4v2 - 2vB)
’ ’ b2 v b(v + b) (v - )3

H(p,T;v) = HPB(T) + ab'T - ab'T - ab 2n<v + b)+ ab'T - ab + RT(4v2 - 2vB)(B - B'T)
» r b

b2 b(v + b) (v - B)3
C,(v,T) = cP8(T) + 6RT28'2(vB - 2v2) , 2RTV((B''T + 28")(B - 2v) + '2T) _ _ Tab’
o (v - pr# (v - )3 b(v + b)2

+ I(ab’'b + 2a'b’b + 2ab’2) _ (a’’'b2T - 2a'b'bT + 2ab'2T - b’ 'bT) 2n<v + b)

b2(v + b) b3 v
c,=c, -T(% dp
P v (ar) /<3v
v, T,x

APPENDIX B

TEMPERATURE DEPENDENCE OF EQUATION OF STATE PARAMETERS

a (kY m3/(kg mol)z) = 8y exp(a;T + asz)

b(m3/kg mol) = by * byT + b,T?

R12 R13B1 R22 R152a
3, 3524.12 ) 2728.10 2514.59 2254.37
8 -2.77230 2 1073 -2.79791 x 1073 2.38706 x 1073 s.87778 x 10-¢
a, —6.73180 x 1077  -1.50848 x 1076 -1.83653 x 1076 -4.37432 1 1076
by, 0.153755 ) 0.139949 0.113681 0.116521
by -1.84195 x 10°%  -1.82428 x 1074 -1.16201 x 1074 -9.04883 x 107
b, -5.03644 x 1078 775898 x 1078 -9.24562 x 1078 -1.14563 x 10"

Mixture interaction parameter

R13B1/R152a f15 = 0.0902
R12/R22 f15 = 0.0406
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APPENDIX A

THERMODYNAMIC FUNCTIONS ARISING FROM THE PERTURBED CARNAHAN-STARLING EQUATION OF STATE

PV . 1l +y + y2 -3 - a
RT (1 - y)3 RT(v + b)
vy = b/4v

A(v,T) = APB(y, T) - 2 g, (" + b) + 4RTB . _ RTBZ
b v (v - B) (v - p)2

B =1b/4
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Figure 2b. The correlation between tabulated and equation of state data for R22
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Figure 3. The variation between the azeotropic composition for R12/R22; (——), this work;
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Figure 4a. The heat of complete vaporization at 222.00 K for the mixture RI2/R22. The

points are data by Neilson and White (1959); the solid line, the values
predicted by the equation of state
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Figure 4b. The heat of mixing at 222.00 K for the mixture R!2/R22 at saturation. The
points are data (Neilson and White); and solid curve, this work



Hm/(J-mol )

Figure 5.

o . -
8000 | . Ooo 573.16 K O
O 47015 K @
o o
o
, o °
6000 | © ]
o
°© o
o
%)
4000 ° 7
o
o o &
®
° ®
Y (o]
[ ] @ -
2000 p °© °
o o ¥ 8
° ee@Q
fo) e o ] .%
@ )
0 ® _° &
PP e ® e o °
93 e @
® e °
@ (: Sopy o @ [« ]
¢ o
%o, °
-2000 %:eg .
)
] 413.15 K ®
o
™ 358.15 K ]
)
o
. [ @ 308.15K By 2
4000 P=760MPa oo
0 X 1
co,
The heat of mixing for the mixture CO./toluene (C

1985)

HB) at the critical pressure
of C02 and at varilous temperatures (Morrison et az.,



